BACKGROUND

- Proliferation (PCa) remains a major cause of death. However, clinicians always have to balance between risk and benefit. This dilemma suggests that the majority of PCa falls into the low-risk category.
- Historically, >90% of low-risk PCa is treated immediately with either radical prostatectomy (RP) or radiation therapy (RT).
- Active surveillance with close clinical follow-up and repeat biopsies may be an important option for men with low-risk PCa, especially in light of emerging oncologic data supporting the use of active surveillance for certain patients.

STUDY OBJECTIVES

- To determine whether gene expression profiles in PCa can predict clinical outcome.
- To identify genes whose quantitative expression predicts clinical recurrence (cRFI) after RP.
- To compare the association between gene expression and clinical recurrence in primary and highest Gleason patterns (PGP and HGP).

RESULTS

- **Sample Preparation**: The tissue samples were microdissected and placed in separate tubes.
- **Assessment of Heterogeneity**: The association between gene expression and clinical recurrence was assessed using a supervised analysis of gene expression data.
- **Comparison of Gene Expression**: Gene expression was compared between primary and highest Gleason patterns (minimum size = 5 mm).
- **Comparison of the Association**: The association between gene expression and clinical recurrence was compared between primary and highest Gleason patterns.
- **Evaluation of the Findings**: The findings were validated using additional weight in the analysis.

Figure 3. Evaluative Parameters, Samples, and Genes

Figure 4. Distribution of Patients by Clinical Recurrence Status

Figure 5. Most Significant Genes Associated with Clinical Recurrence in Both Primary and Highest Gleason Pattern Samples

Table 1. Patient Sample Status

Table 2. Baseline Characteristics

Table 3. Multivariate Analysis: Surgical Gleason Score, Baseline PSA, and Year of Surgery are Associated with Clinical Recurrence

Table 4. Genes Associated with Clinical Recurrence in Both Primary and Highest Gleason Pattern Samples

Figure 6. p-Values and q-Values for the Association of Gene Expression and Clinical Recurrence in Both Primary and Highest Gleason Pattern Samples

Figure 7. Genes Associated with Clinical Outcomes and Gene Expression

Figure 8. Genes and Biological Pathways Associated with Clinical Recurrence in Both Primary and Highest Gleason Pattern Samples

Figure 9. Clinicopathological Parameters Associated with Clinical Recurrence in Both Primary and Highest Gleason Pattern Samples

Table 5. Univariate Std. HRs for cRFI Including AUA Risk Group

Table 6. Multivariate Analysis: Effects of Clinicopathological Parameters on cRFI

Additional Methods

- **Studies**
 - **Precision Digital Enzyme**
 - **Quantitative Gene Expression**
 - **Multivariate Analysis**

Conclusion

- This study provides evidence that gene expression data can be used to predict clinical outcomes in PCa.
- The findings have implications for the development of personalized treatment strategies and the potential for novel therapeutic targets.
- Further validation studies are needed to confirm these findings in larger, more diverse populations.